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a b s t r a c t 

Predictive modeling (PM) is a useful tool in selecting from a large number of target variables. Given the large 
quantities of data types generated from unmanned aerial system (UAS) platforms, uncovering the most appro- 
priate candidate UAS data–based phenotype (UASDP) with a strong relationship to target crop traits may be a 
challenge with the traditional regression models. We hypothesized that by employing machine learning modeling 
techniques, the contributions of multiple vegetative indices as predictors of biomass and water-use could be de- 
fined and ranked. The objective of this study was to apply predictive machine techniques in determining the phase 
of spinach growth and UASDP variables that best predict yield and water-use efficiency. UASDPs were derived 
using red-green-blue and multi-spectral sensors mounted on a UAS platform flown weekly on 10 spinach geno- 
types under well-watered and partial water deficit conditions. Candidate UASDPs including mean and maximum 

plant height, canopy cover and volume, excess greenness index (ExG), chlorophyll red-edge (ChlRE), normal- 
ized difference vegetation index (NDVI) and normalized difference red-edge (NDRE) were generated. UASDPs 
were used to predict above-ground biomass-based fresh yield, biological dry yield, and field water-use efficiency 
(WUE f ). This study highlights the use of bootstrap forest partitioning, and partition rank fraction as methods for 
selecting among many UASDPs as predictors of WUE f and yield. We also used a weighted geometric mean to 
integrate various model performance metrics to further refine the UASDPs rankings. UASDPs from mid to late 
growth stages were better predictors of yield and WUE f than UASDPs from earlier periods. Canopy volume, NDRE 
and ExG were the best predictors overall and were useful for distinguishing varieties, particularly in water-stress 
conditions. We expect that the approaches detailed here will improve reliability of discriminating the importance 
of UAS-acquired data types thereby improving UAS data-processing efficiency. 
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. Introduction 

Machine learning based prediction models has greatly improved the
andling of multiple factors in defining prediction outcomes [1] . Most
raditional regression techniques for crop modeling are sensitive to the
nfluence of outliers and cannot handle data with a large number of pre-
ictor combinations [2] . As a result, there is a need for techniques with
ess strict modeling assumptions and automated methods for identifying
nformative variables. One area where improved modeling techniques
ay be useful is the Unmanned Aerial Systems-generated data. 
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The availability of unmanned aerial (UA) imagery from low-altitude
mall UA vehicles (UAVs) has facilitated the development of scores of
egetative indices (VI)s and sensor correction methods in recent years,
n addition to broadbands refined by hyperspectral filters dedicated to
ltra-thin, one- to several-nanometer slices of the electromagnetic spec-
rum [3–8] . The large variety of indices available poses a methodolog-
cal challenge for agricultural researchers seeking to select indices use-
ul for predicting traits of interest. Hence there is a need for modeling
echniques that can rapidly rank candidate indices according to their
redictive performance. We hypothesized that by employing machine
t 2021 
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earning modeling techniques, the contributions of multiple VIs as pre-
ictors of biomass and water-use could be defined and ranked. An ar-
ay of more flexible modeling techniques previously used in other dis-
iplines is quickly gaining traction in analyses of agricultural experi-
ents. These techniques use attribute-selection filters for extracting at-

ributes most relevant for vegetation performance [9–11] . Some of the
ost widely adopted techniques are variations of classification and re-

ression trees (CARTs) [12] , which may be generated and combined
sing a variety of procedures and flavors [13] and often produce ex-
ellent results [9,14,15] . CARTs use a sequential partitioning algorithm
hat recursively selects factors most important for explaining a response
ariable from a potentially large set of predictors. 

The performance of UA system data–based phenotypes (UASDPs)
ay vary across critical growth phases in a crop. However, it is often
ifficult to determine this phenological dependency without a tempo-
ally continuous set of observations across the entire growth cycle. With
mall UASs, constraints on equipment, data acquisition, data storage
nd data processing may make this economically and logistically im-
ossible [16,5,8] . Thus, many researchers have adopted staggered, in-
tantaneous data acquisition flight plans and used multispectral camera
ypes to capture many slices of wave bands at representative interval
eriods [17,3,18,19] . Such data acquisition plans have improved our
nderstanding of the relationship between crop productivity and crop
henology, biochemical processes, plant–water relations and plant re-
ponses to irrigation differences [20,21,5,22] . 

Vegetation spectra detected by UAS-mounted cameras can be dis-
orted by non-vegetative factors, which in turn can obscure relationships
etween VIs and plant phenotypes. Most VIs intended for biomass esti-
ation use spectra associated with chlorophyll [23,24,8] . The detection

f chlorophyll and most other plant indices is influenced by environ-
ental factors such as atmospheric moisture, illumination and temper-

ture, as well as soil reflectance and soil moisture (S. El-Faki et al., 2000,
25,21,26,7,27] ). Such non-vegetative interference can confound the VI
election process and makes automated variable selection approaches
ll the more important. 

In this study we determined the UASDPs based on standing crop
henotypes, including mean height (MeanHt) determined by averaging
he heights within all pixels in a quadrant, and maximum plant height
MaxHt) returned within each quadrant. We also determined canopy
over (CCover) and canopy volume (CVol). Vegetation index-based UAS-
Ps were also generated from the visible red-green-blue (RGB) bands,
amely excess greenness index (ExG), the near-infrared (NIR) band,
amely normalized difference vegetation index (NDVI) and the tran-
ition narrow band between the red and NIR spectra and red-edge (RE),
amely chlorophyll red-edge (ChlRE) and normalized difference red-
dge (NDRE). The UASDPs were used to predict above-ground biomass-
ased fresh yield (FY), biological yield (BY) as the dry biomass, and
eld water-use efficiency (WUE f ). These data were collected weekly for
 weeks from sowing to harvest. The UASDPs and period of growth
hases that best predicted FY, BY and WUEf in 10 spinach genotypes
rown in well-watered (WW) and partial water deficit (PWD) condi-
ions were evaluated using bootstrap random forest [1] partitioning and
ank-fraction [28] , as well as weighted geometric means [29] . We ex-
ect the approaches detailed here may improve reliability of matching
f UAS-acquired signals with green leaf yield traits and WUE f , thereby
mproving varietal selection. 

. Materials and methods 

.1. Germplasm, field design and evaluation environment 

Four commercial (Bajo, Freja, Sioux and Viroflay) and six Texas
&M AgriLife breeding lines of spinach (Spinacea oleracea) derived

rom University of Arkansas accessions (08-112, 08-166, 08-290, 08-
89, 08-297 and 08-306) were utilized in this study. The 10 varieties
ere evaluated in sixty 0.743-m 

2 plots under two metered irrigation
2 
ones of WW and PWD treatments. The plots were arranged in a random-
zed complete split block design with genotypes grouped in three repli-
ate blocks per water treatment (10 genotypes ×3 replicates ×2 water
reatments). 

The trial was established in the winter of 2020 in well-cultivated soil
t the Texas A&M AgriLife Research and Extension Center at Weslaco,
exas, USA. The experiment was drip-irrigated with the dripline buried
t 10 cm. Soil moisture was monitored in the two irrigation zones using
atermark Soil Moisture Sensors, Model 200SS (Irrometer, Riverside

A, USA) installed at a depth of 15.24 cm (6 in). The WW zone was
rrigated when the soil moisture was at approximately 20 centibars and
he PWD was irrigated when the soil moisture was at 50 centibars. Total
ater supplied through irrigation per plot for the duration of the exper-

ments was ∼31.2 L (WW) and ∼18.2 L (PWD). The different irrigation
egimens were meant to provide two evaluation ‘microenvironments’ in
lose enough proximity to each other to be captured in the same cam-
ra overlap from a very-low-flying (20 m) UAV. This eliminated the
rrors that might have been associated with time lapse when compar-
ng between the two treatments. Hourly rainfall from a weather station
ocated ∼200 m NE of the experimental field was tabulated for the pe-
iod starting 4 d before sowing to 70 days after sowing (DAS) when
pinach plots were harvested (December 20, 2019 to March 3, 2020).
 total of ∼0.023 L of rainfall accumulated per plot during this period.
urther details on orientation and location of the experimental field are
resented in Fig. 1 . Soil type, weather summaries and crop information
re presented in Supplementary Materials and Methods. 

.2. UAS, flight plan and high-throughput field data collection 

UAS data were acquired on six different days of flight (DOFs) spread
cross 8 weeks from when seedlings were ∼2 cm in height to when plants
pproached maximum mean height. 

UAS data were acquired using a DJI P4 Multispectral platform
quipped with a RGB (red, green, and blue) sensor for visible light imag-
ng and five monochrome sensors for multispectral imaging (blue, green,
ed, red edge, and near-infrared); each sensor has a resolution of 2.08-
egapixel. The DJI P4 Multispectral platform also has a spectral sun-

ight sensor to capture solar irradiance. Both platforms were flown on
anuary 21 and 22, February 11, 19 and 24, and Mach 3, 2020. The DJI
hantom 4 Pro collected 48 images per flight and the DJI multispectral
219 images per flight. 

UAS flight missions were designed using a Pix4D Capture application
ith a 20-m flying altitude and an 80% overlap for the DJI Phantom 4
ro and 75% overlap for the DJI multispectral. The timing for the flights
ere staggered between 11:00 AM to 01:00 PM to target clear cloudless
nd relatively calm (low wind breeze) intervals to reduce interference
orm transient clouds and dust. In addition to UAV flights, six perma-
ent and two portable ground control points (GCPs) were surveyed for
ccurate geo-referencing of images. The coordinates of all GCPs were
urveyed using a differential dual-frequency global positioning system
anufactured by V-Map ( http://v-map.net/ ). The average accuracy ob-

ained with GCP’s was 5.5 mm. 

.3. Image-processing pipeline 

RGB images were preprocessed to generate orthomosaic images and
igital surface model (DSM) using Agisoft Photoscan Pro software (Ag-
soft LLC, St. Petersburg, RU). The Multispectral imagery was processed
n DJI Terra software to correct for atmospheric effects and geometric
ariations. The DJI P4 multispectral UAS includes an integrated spectral
unlight sensor that captures solar irradiance on top of the drone. When
ombined with DJI Terra Software ( https://www.dji.com/dji-terra ) to
enerate the multispectral orthomosaic radiometric calibration is per-
ormed automatically. The spatial resolutions of the orthomosaic image
nd DSM on each date were 0.55 cm for the RGB images from the Phan-
om 4 Pro and 1.05 cm for the multispectral. Spatially georeferenced

http://v-map.net/
https://www.dji.com/dji-terra
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Fig. 1. Experimental spinach field location. Field coordinates are in World Geodetic System 1984 (WGS84) UTM Zone 14N. Blue rectangle, well-watered; grey 
rectangle, partial water deficit irrigation. 
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rthomosaics and high-density point clouds were generated using the
tructure from Motion (SfM) algorithm [30] . Radiometrically calibrated
ultispectral orthomosaics were then used to develop VI maps and es-

imate canopy height, canopy area, canopy volume and spectral VIs. A
hapefile of polygons that delimited the plots were created in ArcGIS
0.6.1 (ESRI, Redlands, CA, USA) according to the experimental layout
imensions shown in Fig. 1 . Then the boundaries of the polygons were
oved inward by 5 cm with the ArcGIS buffer tool to exclude edge ef-

ects. 
The Canopeo algorithm [31] was used to differentiate canopy pixels

rom background pixels. Canopy height was calculated by subtracting
he initial DSM before planting from the DSM obtained on a flight date.

.4. Plant growth metrics and indices from RGB and spectral bands 

From the DSM height model, plot-wise plant size metrics included
inimum canopy height, maximum canopy height (MaxHt), mean

anopy height (MeanHt), canopy cover (CCover) and canopy volume
CVol). The MeanHt value was calculated as the mean of all canopy
ixel heights per plot. CCover was calculated as the ratio between the
umber of canopy pixels and the total number of pixels within the plot.
Vol was calculated as the accumulated pixel-wise volume (area ×DSM
eight) for each plot. 

We generated four VIs from orthomosaics, including NDVI, normal-
zed difference RE (NDRE), chlorophyll RE (ChlRE) and excess green-
ess index (ExG). These indices, wave bands, their specific derivation
nd formulae, sensitivities and target utilities are thoroughly reviewed
lsewhere [8,17,22,30,32–34] . Average ExG was calculated as described
y Woebbecke et al. [34] . 

.5. Field-based manual data collection 

Three traits were derived from the terminal water use and the termi-
al yield. The yield was determined per square meter for both fresh and
ry above-ground biomass. The fresh (green) biomass component was
aken as the material cut at ground level from each plot and weighed im-
ediately in the field. A sample from each plot was also weighed fresh

nd then reweighed after drying at 60°C until no further change in dry
3 
eight was recorded. Each sample dry weight was then extrapolated to
epresent the whole plot. For each plot, whole-plot above-ground fresh
eight and whole-plot above-ground dry weight were denoted as fresh
iomass yield (FY) and dry biomass yield or the biological yield (BY),
espectively. 

Determining FY and BY was important, because spinach is mainly
arketed as a leafy green vegetable (hence FY). Yet nutritionally, the

issue matrix containing non-volatile components (dry matter) is more
mportant (hence BY). 

Since evapotranspiration was not estimated, we calculated the field
ater-use efficiency based on above-ground biomass (WUE f ) to account

or both irrigation water and rainfall. WUE f is calculated as the ratio of
rop yield to the total amount of water used on a per-plot basis. This
alue was averaged between replicates for every variety. In this paper,
Y, BY and WUE f are henceforth collectively referred to as terminal
raits (TTs). 

All phenotypic data used in these analyses are available in Supple-
entary Table S1. 

.6. Data mining and statistical analyses 

We first determined the effects of the spinach entry replicates in a
ombined regression of the three TTs (WUE f , BY and FY) under the two
ater treatments. Genotype, treatment and replicates were treated as

andom effects in a full factorial analysis using a restricted maximum
ikelihood (REML) model. 

We used the predictor screening platform in JMP backend (JMP,
ersion 14, SAS Institute Inc., Cary, NC, 1989-2019) to discriminate

he relative strengths of UASDPs at each DOF as predictors of FY, BY
nd WUE f . We applied the principle of bootstrap forest partitioning to
odel and evaluate the proportional contribution of each of the eight
ASDPs in predicting one of three TTs. Bootstrap forests use decision

rees to identify potential predictors by comparing and ranking the con-
ribution of each predictor to reducing residual variance. Since the par-
ition models use multiple predictors simultaneously, screening using
his model can identify variables that might be weak alone but strong
hen used in combination with other predictors [1,13,15] . We identi-
ed significant UASDPs by DOF from a composite 48 combinations (8
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Table 1 

Effects of variety, replicates and treatment and their interactions on WUE and yield: variance components and test for model 

Fresh yield Dry (Biological) yield Field WUE 

Random Effect Var Comp 
Std 
Error 

Wald 
p-Value 

Pct of 
Total 

Var 
Comp 

Std 
Error 

Wald 
p-Value 

Pct of 
Total 

Var 
Comp 

Std 
Error 

Wald 
p-Value 

Pct of 
Total 

Variety (G) 0.281 0.411 0.4956 12.0 0.0028 0.005 0.5973 7.61 2.71 5.19 0.6011 6.4 
Treatment (T) 0.195 0.333 0.5581 8.32 0.0045 0.007 0.5144 12.2 12.0 17.7 0.4999 28.1 
Replication (R) 0.183 0.245 0.4556 7.78 0.0036 0.005 0.4231 10.0 3.56 4.66 0.4441 8.4 
G x T 0.369 0.305 0.2265 15.7 0.0035 0.004 0.3937 9.55 4.16 4.07 0.307 9.7 
G x R 0.559 0.338 0.0977 23.8 0.0085 0.006 0.1298 23.2 8.26 5.16 0.1091 19.4 
T x R -0.068 0.026 0.0098 0 -0.0013 0.001 0.0042 0 -0.73 0.615 0.2335 0 
G x T x R 0.760 0.253 < .0001 32.37 0.0138 0.005 < .0001 37.5 12.0 4.00 < .0001 28.1 
Residual Variance absorbed 

in G x T x R 
Total 2.357 0.600 100 0.0367 0.010 100 42.7 19.2 100 
Summary fit 
Rsquare 0.688 0.3815 0.89 
RSquare Adj 0.687 0.3815 0.65 
Root Mean Square Error 0.872 0.1173 3.46 
Mean of Response 3.958 0.4847 15.2 
Number of plots 60 60 60 
AICc 218.9 -27.53 569.6 
BIC 234.24 -12.29 423.2 

Var Comp, variance component; P of T, percent (proportion) of total variance; Rsquare Adj, adjusted R-square; AIC, Akaike’s Information Criteria; BIC, Bayesian 
Information Criteria 
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ASDPs ×6 DOFs). The contribution of each UASDP ×DOF in the boot-
trap forest was ranked according to the proportion variance that each
ASDP ×DOF combination explained out of a possible 100%. The sig-
ificance of a predictor contribution in the bootstrap was declared at
he 20 th rank out of the 48 candidate combinations, which accounted
or ∼42 percentile strength under each treatment (PWD and WW). See
upplementary Table S2. 

To find the UASDPs that best predicted each TT, we compared each
f the three TTs against each of the eight UASDPs using the robust rank
raction method. This method fits separate regression models for each
redictor and then compares each model against a set of P-value test
hresholds. The advantage of the rank fraction method is that it allows
or tests of a large set of factors across a large number of responses while
lso effectively controlling for inflated error variance due to outliers and
issing values ( [28] , Inc, 1989-2019, [13] ). For each model, we tested
hether UASDP coefficients were significantly different from zero using
tudent’s t-test values. Models were fit with REML. 

Due to the large number of simultaneous tests, and to support the
ultiple inferences that are required, we used the Benjamini–Hochberg

alse discovery rate (FDR) correction [35] , which controls for the over-
ll rate of declaring tests significant. All FDR tests were conducted at
 0.05 threshold. Due to large variances between replicates ( Table 1 ),
ach replicate was treated as a separate (independent) observation in
ultiple regression. The FDR LogWorth P-values (–Log 10 Pvalue) were

anked as a fraction of the number of tests, with smaller P-values ranking
igher than larger P-values. 

Significant TTs by UASDP regressions were re-ranked using a
eighted geometric mean (WGM) [29] approach. The WGM is an an-
lytic hierarchy process (APH) [36] , which is useful for combining
ultiple performance metrics. The WGM was calculated as: 𝑊 𝐺𝑀 =

( 𝑋𝑖 ∧𝑊 𝑖 ) 
1 ∕ 𝑛 , where Π denotes the product is being computed for each

f X(performance metric) for each model i raised to the power wi (the
eight of each coefficient represented by corresponding DOF); n is sum
f the weights w1, w2…..wn. The larger the WGM corresponding to a
ASDP, the higher it ranks in predicting yield and WUE f . 

Performance metrics included model effects, model R squares, trend-
lopes, and frequencies of significant models (across DOFs). Model effect
 Table 2 , and detailed factors in Supplementary Table S3) quantified the
ariation in each TT explained by a UASDP. The R square, adjusted for
ultiple tests, represents variation in a TT explained by each model (in
 D  

4 
he form of y by x correlation). Trend-slope is the vector TT:UASDP
hat relates the rate of temporal change in UASDP across DOFs to
 TT. 

We used paired t-tests to compare performance metrics used the
GM ranking between WW and PWD treatments. 

. Results 

.1. Genotype by treatment effect for WUE f and yield 

In the REML models of TTs as a function of treatment, genotype and
eplicate, main effects were not significant ( Table 1 ). This was likely due
o the large standard error of variances related to environmental noise,
nsufficient water deficit and small sample size. However, interactions
etween genotype, treatment and replicates (G ×T ×R) were significant
nd accounted for the largest proportions of variance of ∼0.76 (32% of
he total by the random factors), 0.01 (37%) and 12.0 (28%) of FY, BY
nd WUE f , respectively. This was because the residuals were absorbed in
he G ×T ×R interaction, lowering the actual standard error. The repli-
ates were therefore treated as ‘independent’ individuals in determining
he relationship between TTs and UASDPs across DOFs. 

.2. Predictors combined for WUE f and yield show variation due to day of 

ight and treatment 

The bootstrap forest models using all the UASDPs identified the DOFs
ssociated with the most accurate predictions of TTs. For both water
reatments, predictions tended to be better using data from late DOFs
days 49, 57, 62 and 70) rather than observations up to day 35 ( Fig. 1 ).

In the PWD treatment, the sum proportions of variance from early
OFs were 0.19 ( ± 0.05), 0.14 ( ± 0.03) and 0.23 ( ± 0.05) for FY, BY and
UE f , respectively (Supplementary Table S3). By contrast, in the later
OFs, variance proportions were 0.81 ( ± 0.29), 0.86 ( ± 0.31) and 0.77
 ± 0.25) for FY, BY and WUE f , respectively. In WW conditions, propor-
ions were 0.20 ( ± 0.05), 0.43 ( ± 0.02) and 0.32 ( ± 0.01) in the earlier
OFs, but 0.80 ( ± 0.29), 0.57 ( ± 0.18) and 0.68 ( ± 0.22) in the later DOFs

or FY, BY and WUE f , respectively. 
For a given UASDP, the last two to three DOFs tended to have sig-

ificantly higher proportions of predicted variance compared to earlier
OFs under PWD. However, under the WW treatment, this pattern was
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Table 2 

Re-ranking of the significant predictors by weighted geometric mean assessment 

Partial water deficit treatment (PWD) Well-watered treatment (WW) Combined 

a Freq b Mean effect c Mean RSq d Mean slope 

e Mean 
total 
RSq f WGM 

g Rank a Freq b Mean effect c Mean RSq d Mean slope 

e Mean 
total 
RSq f WGM 

g Rank h Sum WGM 

i RAT 

Fresh above-ground biomass yield 

MaxHt 4 0.609 (0.204 - 0.643) 0.482 (0.054 - 0.535) 28.8 (12.9 - 54.8) 0.318 2.04bc 5 0 NS (0.054 - 0.380) NS (0.004 - 0.171) NS (11.5 - 33.3) 0.105 NA NA 2.04 8 
MeanHt 4 0.563 (0.089 - 0.678) 0.422 (0.010 - 0.595) 62.1 (21.6 - 71.0) 0.296 2.45de 3 0 NS (0.140 - 0.462) NS (0.023 - 0.253) NS (34.4 - 55.5) 0.105 NA NA 2.45 7 
Cover 6 0.613 (0.506 - 0.698) 0.480 (0.332 - 0.631) 6.43 (4.92 - 13.2) 0.485 1.24a 8 1 0.698 (0.294 - 0.698) 0.576 (0.102 - 0.576) 19.0 (3.55 - 19.0) 0.223 1.97bc 5 3.21 6 
CVol 5 0.600 (0.116 - 0.669) 0.478 (0.018 - 0.593) 59.4 (70.8 – 105) 0.358 2.57e 1 1 0.718 (0.017 - 0.718) 0.610 (0.001 - 0.610) 19.9 (11.1 - 58.2) 0.211 2.06bc 4 4.63 2 
ChlRE 4 0.593 (0.187 - 0.666) 0.461 (0.045 - 0.576) 22.9 (18.1 - 48.9) 0.347 1.84b 7 4 0.505 (0.007 - 0.627) 0.313 (0.001 - 0.465) 22.0 (0.91 - 24.7) 0.216 1.51a 6 3.36 5 
ExG 6 0.602 (0.543 - 0.652) 0.472 (0.382 - 0.550) 36.2 (22.4 - 72.0) 0.432 2.17cd 4 6 0.652 (0.544 - 0.703) 0.507 (0.350 - 0.585) 44.4 (31.4 - 84.7) 0.453 2.45d 1 4.62 3 
NDVI 6 0.606 (0.468 - 0.692) 0.486 (0.284 - 0.620) 22.9 (11.9 - 52.3) 0.486 1.89b 6 5 0.628 (0.015 - 0.646) 0.475 (0.001 - 0.494) 29.6 (4.49 - 66.7) 0.446 2.07bc 3 3.96 4 
NDRE 4 0.590 (0.157 - 0.675) 0.459 (0.032 - 0.590) 58.4 (45.7 - 88.1) 0.327 2.51de 2 4 0.514 (0.481 - 0.703) 0.326 (0.273 - 0.584) 58.3 (13.3 - 42.9) 0.225 2.14c 2 4.65 1 
Dry above-ground biomass yield 

MaxHt 4 0.678 (0.161 - 0.716) 0.512 (0.029 - 0.569) 3.43 (2.06 - 6.24) 0.336 1.05b 6 0 NS (0.028 - 0.362) NS (0.001 - 0.172) NS (0.766 - 3.48) 0.094 na NA 1.06 8 
MeanHt 3 0.685 (0.035 - 0.727) 0.523 (0.001 - 0.587) 6.11 (0.680 - 9.28) 0.317 1.30bc 2 0 NS (0.141 - 0.413) NS (0.026 - 0.223) NS (0.392 - 6.68) 0.090 na NA 1.30 7 
Cover 6 0.688 (0.590 - 0.781) 0.532 (0.386 - 0.678) 0.906 (0.740 - 2.07) 0.524 0.692a 8 1 0.528 (0.258 - 0.528) 0.365 (0.087 - 0.365) 1.88 (0.370 - 1.88) 0.142 0.713a 4 1.40 6 
CVol 5 0.680 (0.161 - 0.778) 0.519 (0.029 - 0.673) 7.78 (1.48 - 14.9) 0.392 1.40c 1 1 0.559 (0.042 - 0.559) 0.410 (0.002 - 0.410) 2.03 (2.03 - 6.22) 0.161 0.775ab 5 2.17 2 
ChlRE 4 0.630 (0.299 - 0.714) 0.444 (0.095 - 0.566) 7.01 (2.01 - 8.50) 0.333 1.25bc 3 2 0.468 (0.012 - 0.509) 0.289 (0.001 - 0.340) 2.37 (0.213 - 2.54) 0.153 0.684a 6 1.94 4 
ExG 6 0.625 (0.548 - 0.659) 0.435 (0.333 - 0.482) 4.25 (2.36 - 9.23) 0.408 1.06b 5 5 0.545 (0.436 - 0.547) 0.391 (0.249 - 0.432) 5.08 (3.05 - 9.73) 0.367 1.03c 1 2.08 3 
NDVI 5 0.674 (0.505 - 0.777) 0.509 (0.283 - 0.670) 3.00 (1.38 - 6.40) 0.471 1.01b 7 3 0.550 (0.381 - 0.562) 0.397 (0.190 - 0.414) 2.31 (1.32 - 4.85) 0.323 0.797ab 3 1.81 5 
NDRE 4 0.630 (0.265 - 0.722) 0.444 (0.078 - 0.579) 7.01 (4.84 - 16.2) 0.322 1.25bc 3 2 0.485 (0.004 - 0.527) 0.311 (0.026 - 0.364) 6.51 (0.14 - 6.85) 0.160 0.994c 2 2.24 1 
Field water-use efficiency based on above-ground biomass 

MaxHt 4 0.678 (0.161 - 0.716) 0.512 (0.029 - 0.569 133 (84.0 – 254) 0.336 3.59b 5 0 NS (0.028 - 0.362) NS (0.001 - 0.172) NS (18.3 - 83.0) 0.094 na NA 3.59 8 
MeanHt 4 0.685 (0.035 - 0.727) 0.523 (0.001 -0.587) 248 (27.7 – 378) 0.317 4.46cd 3 0 NS (0.059 - 0.413) NS (0.005 - 0.223) NS (9.34 – 159) 0.090 na NA 4.46 6 
Cover 6 0.688 (0.590 - 0.781) 0.532 (0.386 - 0.678) 36.9 (27.4 - 56.2) 0.524 2.38a 8 1 0.528 (0.271 - 0.370) 0.365 (0.087 - 0.365) 44.8 (8.83 - 44.8) 0.174 2.05a 5 4.43 7 
CVol 5 0.680 (0.161 - 0.778) 0.519 (0.029 - 0.673) 361 (60.1 – 586) 0.392 5.03d 1 1 0.559 (0.042 - 0.559) 0.410 (0.002 - 0.410) 48.4 (48.4 – 148) 0.161 2.23ab 4 7.26 2 
ChlRE 4 0.635 (0.299 - 0.714) 0.450 (0.099 - 0.566) 149 (81.7 – 346) 0.333 3.50b 7 2 0.468 (0.012 - 0.509) 0.289 (0.001 - 0.340) 56.5 (24.3 - 60.6) 0.153 1.97a 6 5.46 5 
ExG 6 0.625 (0.548 - 0.659) 0.435 (0.333 - 0.482) 173 (91.3 – 376) 0.408 3.61b 4 5 0.545 (0.376 - 0.574) 0.391 (0.185 - 0.432) 121 (78.4 - 485) 0.341 2.96d 1 6.57 3 
NDVI 3 0.674 (0.265 - 0.722) 0.509 (0.078 - 0.579) 111 (197 – 662) 0.471 3.37b 6 3 0.550 (0.381 - 0.562) 0.397 (0.190 - 0.414) 55.2 (31.6 – 116) 0.323 2.29ab 3 5.66 4 
NDRE 2 0.630 (0.505 - 0.777) 0.444 (0.283 - 0.670) 333 (56.2 – 261) 0.322 4.53cd 2 2 0.485 (0.004 - 0.527) 0.311 (0.001 - 0.364) 155 (3.26 – 163) 0.160 2.86cd 2 7.39 1 

a Number (Frequency) of DOFs when LogWorth was significant DOFs 
b Mean (and range) effect assigned to a UASDP as a predictor of TT on significant LogWorth DOFs shown under ‘Freq’; range based on all six DOFs 
c Mean (and range) of total (RSq)Variation explained by LogWorth-significant DOFs 
d Mean slope (and range) of regression fits for significant DOFs 
e Mean total RSq, variation explained 
f WGM, weighted geometric mean based on effect, RSq and slope, with the significant DOFs (Frequency) as the weights 
g Rank based on the weighted geometric means (Rank 1 for largest mean and so on) for a TT, under a treatment 
h Sum of weighted geometric means across treatments 
i RAT, rank across treatmentss based on sum of weighted geometric mean (Rank 1 for largest mean) 
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Table 3 

Summary paired t-tests 𝜓 comparing water treatments by model performance metrics 

Frequency Effect AdjRsq Slope WGM 

Terminal trait PWD WW LWth 𝜙 PWD WW LWth PWD WW LWth PWD WW LWth PWD WW LWth 

FY 4.88 3.5 1.19 0.60 0.62 0.51 0.47 0.47 0.33 37.1 32.2 0.40 2.09 2.03 0.31 
BY 4.63 2.33 2.43 ∗ ∗ 0.66 0.52 4.14 ∗ ∗ 0.49 0.36 3.26 ∗ ∗ 4.92 3.36 0.95 1.13 0.83 1.57 ∗ 

WUE f 4.25 2.33 1.48 ∗ 0.66 0.52 4.09 ∗ ∗ 0.49 0.36 3.23 ∗ ∗ 193.3 80.2 1.53 3.81 2.39 2.18 ∗ ∗ 

𝜓 Based on mean performance metrics of the eight UASDPs in this study 
𝜙 Conversion to –Log 10 (Pvalue). AdjRsq, adjusted R square; BY, dry above-ground biomass yield; FY, fresh above-ground biomass yield; LWth, LogWorth (–

Log 10 Pvalue); PWD, partial water deficit; WGM, weighted geometric mean; WUE f , field water-use efficiency based on above-ground biomass; WW, well-watered. 
Significant at ∗ P = 0.05; ∗ ∗ P < 0.01 
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nly observed for ChlRE and NDRE in predicting BY and WUE f but not
Y. This was also observed for NDVI in predicting FY (Supplementary
ig. S1). 

.3. Strength of individual UASDPs in predicting WUE f and yield 

Results of the robust rank fraction analysis are shown in Fig. 3 . 
A total of 144 (6 TTs ×8 UASDPs per DOF ×6 DOFs) combinations

ere tested for significance in each treatment. In the PWD treatment,
odels were significant for least one DOF in each TT x UASDP combina-

ion (for a total of 111 out of 144 TT ×UASDP models) ( Table 2 ). Under
he WW treatment there were fewer significant TT ×UASDP models (49
ut of 144). MeanHt and MaxHt were not significant for any of the DOFs
Supplementary Table S3). 

Results of the WGM re-ranking analysis are presented in Table 2 .
Vol ranked as the strongest predictor for all three TTs under the PWD
reatment ( Table 2 ). The second, third and fourth ranked predictors were
DRE, MeanHt and ExG for FY; MeanHt, NDRE and ChlRE (tied), and
xG for BY; and NDRE, MeanHt and ExG for WUE f . Under the WW treat-
ent, the top three predictors were ExG, NDRE and NDVI for all the

raits. CVol was the fourth ranked predictor for FY and WUE f , while
Cover was fourth for BY. MaxHt and MeanHt were not significant in
odels in the WW treatment. 

.4. UASDPs are more predictive in PWD than in WW ( Table 3 ) 

Comparing model performance metrics among water treatments,
ean effects and mean adjusted R squares were all significantly larger

P ≤ 0.04) in PWD than WW for both BY and WUE f but not FY ( Table 3 ).
ean slope was significantly greater under PWD compared to WW con-

itions (P = 0.03) only for WUE f , suggesting that that the aggregate rate
f change in factors influencing WUE f was better represented by the
ASDPs. The number (frequency) of DOFs in which the prediction of
Ts by UASDPs was significant was also greater under PWD than under
W conditions. This suggests that the UASDPs provided stronger sig-

als under PWD, perhaps due to the likely greater variability between
lants or plots. This observation is consistent with the results presented
n Fig. 1 and Supplementary Fig. S1. 

.5. Relationship between the effects of genotypes on TTs and UASDPs in 

ater DOFs 

The mean spectral values of the most predictive UASDPs at each
OF are plotted against three spinach varieties in Fig. 4 . The plots show
ifferential trends between varieties only in the later phases of plant
rowth. The varieties for which there were statistical differences in UAS-
Ps in the last three DOFs also exhibited corresponding differences for

erminal yield and WUE f ( Table 4 ). 
For instance, the top three UASDPs (ExG, CVol and NDRE) exhib-

ted a similar pattern of mean separation between varieties 08-306 and
8-290 and between 08-306 and Viroflay under the PWD treatment. A
imilar pattern of mean separation is also observed between Viroflay and
8-306 and between Viroflay and 290 under the WW treatment ( Fig. 4 ).
6 
he mean UASDP values observed for 08-306 tended to be larger than
hose of either 08-290 or Viroflay, although this distinction was more
ubdued for CVol. All other comparisons (e.g., 08-290 vs Viroflay under
WD) were not statistically different. A similar pattern was observed
n the mean terminal yield and WUE f associated with these three va-
ieties ( Table 4 ). These observations suggest that UASDPs in the lat-
er stages of spinach growth may be optimal for predicting yield and

UE f . 

. Discussion 

The goal of this study was to determine the potential of VIs acquired
y sensors mounted on a low-flying UAV to predict terminal WUE f and
ield in varieties of spinach in the field. 

.1. WUE f and yield predictability improves as spinach canopy increases 

We evaluated the proportional variance explained by each UASDP
t each DOF through predictor screening with a bootstrap forest parti-
ioning model [1,12] . We determined that the composite UASDPs gen-
rally became better predictors of yield and WUE f in the latter three
OFs ( Fig. 2 ), which correspond to the mid to late stages of spinach
evelopment [37,38] . Most spectral VIs in the visible broadband and
IR bands are variously affected by multiple non-vegetative environ-
ental factors such as soil [7,21,26] , resulting in varying sensitivities.
his condition affects their ability to predict primary productivity (re-
iews [8,39] ) on which terminal yield and WUE f depend. In this study,
e did not directly determine such extraneous factors, but they are

ikely to be less pervasive in late growth stages when spinach canopies
ere more closed (Supplementary Fig. S2). This suggests that the later
ight dates may be better for predicting TTs in fresh leaf spinach (be-

ore bolting) using UAS-derived data. Individual differences exist across
he DOFs but the general trend across time evident from our analysis
upports this interpretation. This result may be important for reducing
ight costs by collecting imagery in more informative periods of spinach
rowth. 

.2. Ranking UASDPs individually may be useful in variable selection 

As is evident in Supplementary Fig. S1, greater UASDP predic-
ive importance was associated with later DOFs after decomposing the
omposite ‘model’ (described above) into its contributing ‘bivariates’
TT ×UASDP per DOF). However, the predictive importance of some
actors may be masked while others may only show in the presence of
nother [13,15] . To fully exploit the individual predictive strengths, we
mplemented a robust rank fraction method ( [13,28] , Inc, 1989-2019)
hat automates the modeling of each bivariate individually, producing
oth the regular linear regression coefficients and a –Log 10 (Pvalue) rank
f each regression fit in relation to all others in the batch. Out of a
ossible 144 (3 TTs ×8 UADP regressions ×6 DOFs) combinations, the
obust ranking procedure enabled us to eliminate ∼66% and 23% of
on-significant combinations in PWD and WW, respectively ( Fig. 2 and
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Table 4 

Means and least square means separation a by variety and treatment 

Fresh yield (FY) Biological yield (BY) Field water-use efficiency (WUE f ) 

Least squares mean 
SE = 0.564; SE Dif = 0.707 

Least squares mean 
SE = 0.067; SE Dif = 0.080 

Least squares mean 
SE = 2.164; SE Dif = 2.590 

08-112,PWD 4.176 A B C D E F 0.482 A B C D 19.797 A B 
08-112,WW 4.713 A B 0.546 A B C 13.029 C D E F G 
08-166,PWD 3.939 A B C D E F 0.481 A B C D 19.681 A B 
08-166,WW 4.234 A B C D E 0.569 A B C 13.647 C D E F G 
08-289,PWD 3.704 A B C D E F 0.433 A B C D 17.594 A B C 
08-289,WW 4.364 A B C D 0.528 A B C D 12.623 D E F G 
08-290,PWD 2.779 F 0.365 D 14.447 B C D E F G 
08-290,WW 4.849 A B 0.557 A B C 13.478 C D E F G 
08-297,PWD 3.644 B C D E F 0.427 B C D 17.162 A B C D E 
08-297,WW 4.671 A B 0.597 A 14.470 B C D E F G 
08-306,PWD 4.591 A B C 0.511 A B C D 20.987 A 
08-306,WW 5.145 A 0.601 A B 14.455 B C D E F G 
Banjo,PWD 3.224 C D E F 0.411 C D 16.527 A B C D E 
Banjo,WW 4.450 A B 0.553 A B C 13.321 C D E F G 
Freja,PWD 3.741 A B C D E F 0.452 A B C D 18.476 A B C 
Freja,WW 4.329 A B C D E 0.519 A B C D 12.362 D E F G 
Sioux,PWD 3.491 B C D E F 0.430 A B C D 17.645 A B C D E 
Sioux,WW 3.073 D E F 0.441 A B C D 10.287 F G 
Viroflay,PWD 2.901 E F 0.366 D 14.765 B C D E F 
Viroflay,WW 3.140 D E F 0.424 A B C D 9.941 G 
Treatment 

SE = 0.379; SE Dif = 0.256 SE = 0.046; SE Dif = 0.026 SE = 1.515; SE Dif = 1.044 
PWD 3.673 A 0.439 A 17.626 A 
WW 4.243 A 0.530 A 12.844 B 

a For each terminal trait (FY, BY and WUE f ), variety by treatment connected by the same letter are not statistically different. Means separated by Student’s t-tests. SE, standard error of mean; SE Dif, standard error 
of mean difference PWD, partial water deficit; WW, well-watered 
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Fig. 2. Predictor proportional ranking by day of flight (D) using all unmanned aerial system data–based phenotypes. Each bar represents the sum proportion of 
variance predicted. Sum proportions not sharing a letter are statistically different. WUE f is field water-use efficiency. Fresh yield is above-ground fresh weight 
determined in the field at harvest. Biological yield is above-ground dry mass. 
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able 2 columns 1, 2 & 9; each combination is identified in Supplemen-
ary Table S3). We suggest that this technique is useful in situations with
 large number of potential indices and/or measurements from multi-
nd hyperspectral imagery. 

.3. WGM ranking UASDPs with performance metrics improves prediction 

f terminal yield and water-use efficiency 

We have shown that the proportions of variance in terminal traits
FY, BY and WUE f ) explained by the UASDPs were generally higher in
he second half of the sampling dates when the canopy was closing in
 Fig. 1 and Supplementary Fig. S1; additional information in Supple-
entary Table S2). Using the principle of WGM, we reranked the UAS-
Ps. 

Growth-associated parameters, including lateral growth (CCover)
nd vertical growth (MaxHt), individually were either the least signif-
cant (lowest ranked, CCover) or the most inconsistent predictors of
Ts across treatments ( Table 3 ). CCover relies on a two-dimensional
erspective [31] that does not account for tiered overlaps of leaves,
hile MaxHt overlooks undergrowth, which is important in defining
arvestable spinach total volume. It is thus not surprising that CVol,
hich incorporates both lateral and vertical growth, was ranked high-

st among the UASDPs overall. 
As RE light is more permeable through leaves, it has better canopy

enetrance than red light [8,40] . RE-based indices like NDRE are better
ndicators of vegetation health/vigor than NDVI for mid- to late-season
rops that have accumulated high levels of chlorophyll in their leaves
40] . NDVI is more sensitive to soil interference and often loses sensitiv-
ty after plants accumulate a critical level of leaf cover or chlorophyll.
his is because NDVI is a function of the red spectra and chlorophyll
as a maximum absorption in the red waveband, which does not pene-
rate very far past a few leaf layers [8,39,40] . We also speculate that the
eeper canopy penetrance of RE and its derived indices (e.g., NDRE) are
etter at predicting yield and WUE f . In this study, the WGM re-ranking
ound NDRE and CVol to be the two best overall UASDPs for predicting
Ts. NDRE was superior to the widely used NDVI and to indices rely-

ng on the visible spectra encompassing blue light, red light, or a mix-
ure of visible and NIR light. The green chromatic hue-based ExG index,
ven though it is based on RGB, is well suited for both nonshaded and
haded sunlit conditions [34] . We speculate that the ability to detect
ignals from the shaded parts of the canopy made ExG a stronger pre-
ictor of TTs in both treatments. However, the penetrance of RE seems
o be relatively more important under our experimental conditions. 
8 
.4. Consistency between random forest and WGM rank fraction rankings 

UASDP ×DOF model performance metrics were generally better in
WD than WW conditions. Since performance metrics were calculated
or each UASDP separately, we expected that the patterns observed
ould generally mirror the trends observed in the random forest ranking
 Fig. 1 ), even though these two methods were completely different. We
ound evidence that rankings from these methods were similar for BY
nd WUE f, . The differences between WW and PWD were statistically sig-
ificant for these TTs in the random forest analysis for most DOFs ( Fig. 1
nd Supplementary Table S3, compared to Table 3 ). These observations
lso mirrored the paired t-test for the WGM (insignificant LogWorth 0.31
 ∼P = 0.49] for FY, significant LogWorth 1.58 [ ∼P = 0.03] for BY and sig-
ificant LogWorth 2.18, [ ∼P < 0.01 for WUE f ]; Table 3 ). These results
uggest that the two parallel methods used in this study have the poten-
ial for enhancing analysis of multiple UAS-acquired plant data. To our
nowledge, this may be among the first reports using WGM to improve
he selection of prediction factors in plant studies. Further studies in this
rea are needed. 

.5. Temporal trends in UASDPs parallel separation of TTs associated with 

pinach varieties 

We examined how variation in UASDPs across DOFs was associated
ith WUE f and yield. The top three ranked UASDPs (i.e., NDRE, CVol
nd ExG, were used to detect differences in TTs between treatments
nd between varieties ( Table 4 ). We evaluated whether varieties with
ignificant mean separation also had detectable differences in UASDP
ime sequence signals. 

Varieties that had differences in TTs also had corresponding differ-
nces in UASDP values in latter DOFs. Statistical differences in UASDPs
ere detectable between varieties only in later growth stages ( Fig. 3
nd Table 4 ). UASDP differences corresponded to statistically signifi-
ant differences in WUE f and yield between some varieties. This sug-
ests remotely sensed plant growth and health indices can be used to
redict yield and water-use efficiency, as well as to discriminate be-
ween varieties, particularly in water-limited situations. We suggest that
redictive accuracy is dependent on the choice of the correct UASDP,
he DOF (plant growth phase), and the reflectance spectral bands ap-
lied. We demonstrated that variable selection could be improved by
ntegrating and fine-tuning different modeling techniques. We expect
he approaches detailed here may improve reliability of matching of
AS-acquired signals with green leaf yield traits and WUE f , thereby im-
roving varietal selection. 
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Fig. 3. Discriminating predictor ranks by P-value and false discovery rate (FDR) thresholds. FDR P-values and P-values are plotted against the rank fraction (RF), 
which ranks the P-values for each unmanned aerial system–derived trait. P-values are from regressions against terminal yield and water-use traits. 

Fig. 4. Trends in top-ranked three unmanned aerial system data–based phenotypes (UASDPs) across time for three spinach varieties. UASDPs are on the vertical 
axis, and UAS days of flight (D) are on the horizontal axis. Each marker point represents the average UASDP value for three plots (each containing 28 plants) within 
a water treatment (partial water deficit [PWD] or well-watered [WW]). Varieties having statistically different least square means for WUE f and yield are shown 
(PWD, 08-306 vs 08-290 and 08-306 vs Viroflay; WW, Viroflay vs 08-306 and Viroflay vs 290; any other combination [e.g., 08-290 vs Viroflay under PWD] had no 
statistical difference). 
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. Conclusions 

We determined the phases of spinach growth and UASDP variables
ost useful for predicting yield and water-use efficiency. UASDPs were
erived from RGB and multispectral sensors mounted on a UAS plat-
orm. Composite UASDPs from later growth stages were better predic-
ors of yield and WUE f . Several UASDP indices were statistically dif-
erent between varieties and treatments in the late phases of spinach
rowth. These statistical differences in UASDPs corresponded to the
9 
easured differences in terminal yield and water-use efficiencies be-
ween the varieties. The top three VIs and plant growth parameters
cross treatments were NDRE, ExG and CVol. 

In this study, prediction models were dependent on the choice
f the correct UASDP, the DOF (plant growth phase), and the re-
ectance spectral bands. This study also highlights the potential for in-
egrating multi-factor modeling and the principle of geometric mean
or prioritizing TT–predictor relationships. Applying different mod-
ling techniques can enhance decision-making regarding the choice
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f appropriate VI for predicting traits in spinach and other leafy
reens. 
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